THE MYTHOLOGIES OF

 WIRELESS COMMUNICATION
What is an Antenna ?

A device whose primary purpose is to radiate or receive electromagnetic energy

What is Radiation ?
Far Field (Fraunhofer region>2L / λ)
the fields are transverse the shape of the field pattern is independent of the distance

What is the Near- Field (Fresnel region) ?
\star The near field is in the region $D<2 L^{2} / \lambda$
\star Near Field: power is complex (need both $E \& H$) \star Far Field - Real Power: need either E or H

PROPERTIES OF NEAR FIELD

For a Dipole \rightarrow
$\mathrm{E}_{\mathrm{z}}=-j 30 \mathrm{I}_{\mathrm{m}}\left[\exp \left(-j k R_{1}\right) / R_{1}+\exp \left(-j k R_{2}\right) / R_{2}-2\right.$ $\cos (\mathrm{kH}) \exp (-j k \rho) / \rho]$
The near field can never be zero for a dipole!!!!
Only the far field has pattern nulls!!

$$
\begin{gathered}
\text { What is the Far- Field? } \\
D>2 L^{2} / \lambda: L \text { - Antenna region }
\end{gathered}
$$ What is the far field of a half wave dipole for

$$
\lambda=0.3 \mathrm{~m}(1 \mathrm{GHz}) ?
$$

$$
\rightarrow 2 \times 0,15 \times 0.15 / 0.3=0.15 \mathrm{~m}
$$

What is the far field when the half wave dipole is 20 m above an infinite ground
plane at $\lambda=1 \mathrm{~m}$?
Equivalently if the dipole is on the top of a 20 m tower above a perfect ground plane?
$\rightarrow 2 \times 40 \times 40 / 0.3=10,666 \approx 10.6 \mathrm{~km}$

The radiation pattern of a half wave dipole in free space (only one fourth shown)

Field Regions Around An Antenna

Plot of the variation of the channel capacity as a function of the height of the transmitting antenna above a perfectly conducting earth, for a fixed height of 2 m for the receiving antenna.

Different transmitting dipole configurations at a height of $20 \mathrm{~m}, 20 \mathrm{~m}$ tilted downwards at an angle of $11^{\circ}, 10 \mathrm{~m}, 2 \mathrm{~m}$ and 1 m tilted upwards by an angle of 1° above the ground plane. The receiving dipole is located at 2 m above the ground plane and at a horizontal distance of 100 m from the transmitter. The receiving dipole is enclosed by a dielectric shell.

Comparison of the plots of the variation of the channel capacity as a function of the height of the transmitting antenna above a perfectly conducting earth, for a fixed height of 2 m for the receiving antenna. LOS stands for line-of-sight.

Limited Spectrum for Mobile Broadband

OPPORTUNITY WINDOW: The best frequencies for mobile broadband are high enough that the antenna can be made conveniently compact, yet not so high that signals will fail to penetrate buildings. This leaves a relatively narrow range of frequencies available for use [red band].

IEEE SPECTRUM Magazine, October 2010, pp. 29

There will be constructive and destructive interference. So what will be the variation of power?

$$
(100 \pm 1) \mathrm{W} / \mathrm{m}^{2} ? ?
$$

2Ω

Power Dissipated in 1Ω
$=2 r(1$

Power Dissipated in 1Ω
$=I^{2} R=2^{2} \cdot 1=4$

Applied Superposition
Power Dissipated in 1Ω
$=I^{2} R=3^{2} \cdot 1=9$

Power Superposition does not work in electrical engineering!

Power Superposition does not work in electrical engineering! Only Superposition of the VOLTAGES and the CURRENTS are allowed!!

In electrical engineering, unlike mechanical engineering, it is vector in nature!

ONLY VOLTAGES AND CURRENTS CAN BE SUPERIMPOSED AND NOT POWER! THAT IS WHY WE CALL EE FIELD THEORY. The field quantities expressed by the electric and magnetic fields are related to voltage and current, respectively. The fields add up not power.

Interference occur between the fields E1 and $E 2$. So the variation in field is

$$
\sqrt{2 \eta} \cdot(10 \pm 1)
$$

$$
\begin{aligned}
& 1=\frac{E_{2}^{2}}{2 \eta} \\
& E_{2}=1 \sqrt{2 \eta}
\end{aligned}
$$

Therefore the variation in the power due to interference is $121 \mathrm{~W} \leftrightarrow 81 \mathrm{~W}!!$

Shannon's Capacity for a Single Channel

$$
C=B \log _{2}(1+P / N)
$$

Extension of Shannon Channel Capacity to multichannel system (like MIMO)

$$
C_{M}=M \cdot B \log _{2}\left(1+\frac{P}{M \cdot N}\right)
$$

This equation is often used to claim that a MIMO is better than a SISO! Does it make sense?

Power superposition is not applicable in electrical engineering!!!

Dennis Gabor wrote:[1952, IEEE Trans on Information Theory, First Issue]

The wireless communication systems are due to the generation, reception and transmission of electro-magnetic signals. Therefore all wireless systems are subject to the general laws of radiation.

Communication theory has up to now been developed mainly along mathematical lines, taking for granted the physical significance of the quantities which are fundamental in its formalism.

But communication is the transmission of physical effects from one system to another. Hence communication theory should be considered as a branch of physics.

Channel Capacity

Shannon Formula

$$
C_{S}=B \log _{2}\left(1+\frac{P_{S}}{P_{N}}\right)
$$

- Use signal power and noise power

Does not represent near-field behavior of the signals
Under the constraint that the average radiated power
is constant
freq $=1 \mathrm{GHz}$
$\lambda=30 \mathrm{~cm}$
Radius of wire $=0.0001 \lambda$

Transmitter Receiver

Variation of Channel Capacity with the height of the Tx antenna

Load on the received antenna (Rx Ant $\mathrm{HT}=2 \mathrm{M}$)

Tx Ant Ht	Case 1: 50 Ω	Case 2: Matched
Free Space	$\mathbf{5 0}$	$97.6-\mathbf{j} 45.4$
$\mathbf{h}=15 \mathrm{~cm}$	50	$97.6-\mathbf{j} 45.4$
$\mathbf{h}=1 \mathrm{~m}$	50	$97.6-\mathbf{j} 45.4$
$\mathrm{~h}=10 \mathrm{~m}$	$\mathbf{5 0}$	$97.6-\mathbf{j} 45.4$
$\mathrm{~h}=20 \mathrm{~m}$	50	$97.6-\mathbf{j} 45.4$

Magnitude of the Received Power

Capacity defined by $\log 2($ Ratio $)$

$$
\mathrm{C}_{0}^{\mathrm{U}}=\mathrm{C}_{0}^{\mathrm{M}}-0.28 B
$$

	Case $1[\mu \mathrm{~W}]$		Case $2[\mu \mathrm{~W}]$	
Free space	0.064	$\mathrm{C}_{0}{ }^{\mathrm{U}}=\mathrm{C}_{0}{ }^{\mathrm{M}}-0.28 B$	0.078	$\mathrm{C}_{0}{ }^{\mathrm{M}}$

For $S / N \approx 128$ or 21.2 dB

$$
\log _{2}(S / N) \approx \log _{2}\left(2^{7}\right) \approx 7
$$

Compare 7B to 0.28B for the capacity. CONCLUSION:
ELECTROMAGNETIC PRINCIPLES
of MATCHING DEVICES
THEREFORE ARE IRRELEVANT!!!

MIMO:
 A
 STAISTICAL
 ABERRATION ?!?

METHODOLOGIES

Using a Simplistic Thinking

Using a Signal Processing Terminology

Using Maxwell-Poynting Theory

Using a Simplistic Thinking

$$
\mathrm{C}_{2}>\mathrm{C}_{1}
$$

$$
\mathrm{Z}_{\mathrm{A}}=93 \Omega
$$

Using a Signal Processing Terminology

A MIMO System

Using a Signal Processing Terminology

In general

$[H]=[U][\Sigma][V]^{H}$ with $[U][U]^{H}=[I]$ and $[V][V]^{H}=[I]$ [Σ] is a diagonal matrix

$$
\begin{aligned}
& {[Y]=[U][\Sigma][V]^{H}[X]} \\
& {[Y]^{\prime}=[U]^{H}[Y]=[\Sigma][X]^{\prime}=[\Sigma][V]^{H}[X]} \\
& {[X]^{\prime}=[V]^{H}[X] \Rightarrow[X]=[V][X]^{\prime}} \\
& {[Y]^{\prime}=[U]^{H}[Y] \Rightarrow[Y]=[U][Y]^{\prime}}
\end{aligned}
$$

$[Y]^{\prime}=[\Sigma][X]^{\prime} \quad[V]^{H}[X]=[X]^{\prime} \Rightarrow[\Sigma] \Rightarrow[Y]^{\prime}=[U]^{H}[Y]$
Multiple Decoupled Spatial Channels
Operating at the same FFREQUENCY

Using a Signal Processing Terminology

The principle of MIMO

$$
\begin{aligned}
& {[Y]^{\prime}=[\Sigma][X]^{\prime}} \\
& {\left[\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & \\
0 & \sigma_{2}^{2} & \\
& & \ddots
\end{array}\right]\left[\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots
\end{array}\right]}
\end{aligned}
$$

There are multiple separate decoupled channels

$$
\begin{aligned}
& y_{1}^{\prime}=\sigma_{1}^{2} x_{1}^{\prime} \\
& y_{2}^{\prime}=\sigma_{2}^{2} x_{2}^{\prime} \\
& \vdots
\end{aligned}
$$

Hence the conjecture simultaneous multiple transmission can be made

$$
[X] \rightarrow \underset{\text { WIRELESS COMES IN }}{\left[[V]^{T}\right.} \rightarrow \underset{\sim}{[X X]^{\prime} \rightarrow[\Sigma] \rightarrow[Y]^{\prime}} \rightarrow[Y] \rightarrow[Y]
$$

A MIMO System

$\tilde{\mathbf{y}}=\mathbf{U}^{H} \mathbf{y}=\mathbf{U}^{H} \mathbf{H} \mathbf{x}=\mathbf{U}^{H}\left(\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{H}\right) \mathbf{x}+\mathbf{U}^{H} \mathbf{n}$
$\tilde{\mathbf{y}}=\boldsymbol{\Sigma} \mathbf{V}^{H} \mathbf{x}+\mathbf{U}^{H} \mathbf{n} \quad \tilde{\mathbf{y}}=\boldsymbol{\Sigma} \tilde{\mathbf{x}}+\tilde{\mathbf{n}}$

Using a Maxwell-Poynting Theory

\longrightarrow Good radiation

\longrightarrow Lousy radiation

Hence, even though simultaneous multiple channels are possible, only one is practical and the others are not very useful from a systems perspective

A typical 3×3 MIMO system consisting of half wave dipoles, half wavelength spaced and separated by 100 m .

SISO 1×1	MIMO 2×2	MIMO 3×3	MIMO	MIMO
1.0	5.21	11.95	22.18	34.85
	3.73×10^{-6}	9.67×10^{-5}	6.26×10^{-4}	2.75×10^{-3}
		2.85×10^{-11}	$1.88 \times 10^{--9}$	2.40×10^{-8}
			4.28×10^{-16}	5.42×10^{-14}
				9.15×10^{-21}

Ratio of the Square of the Singular Values for the Various Spatial MIMO Modes with Respect to the SISO Case (Broadside Orientation).
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { SISO } 1 \times 1 & \text { MIMO } \\ \hline 1.0 & 4.46 & 10.58 & 19.45 & 3 \times 2\end{array}\right] .05$

Ratio of the Square of the Singular Values for Various Spatial MIMO Modes with Respect to the SISO Case (Collinear Array Over a Ground Plane).

Received Power $=0.32 \mathrm{~mW}$

SISO SYSTEM

2×2 MIMO SYSTEM

2 orthogonal spatial modes Mode 1: Excitation 1V; 1V Mode 2: Excitation 1V; -1V

How does one get a feed to extract the two signals For the two orthogonal spatial modes?

Received Power for each mode Mode 1: 1.4 mW Mode 2: $6.6 \mu \mathrm{~W}$

Input Power=1W; for each spatial mode

$$
\begin{aligned}
& C_{\text {SISO }}=B \log _{2}\left(1+\frac{0.00034}{P_{N}}\right) \\
& C_{\text {MIMO }}=B \log _{2}\left(1+\frac{0.0014}{2 \times P_{N}}\right)+B \log _{2}\left(1+\frac{0.0000066}{2 \times P_{N}}\right)
\end{aligned}
$$

Observations:
-The phased-array mode is the efficient one as expected over a
2 SISO
2. One of the MIMO modes is a lousy radiator, that is why antenna

3 engineers use only a single spatial mode
3. Channel has a linear increase; whereas power has a logarithmic increase

SUPERPOSITION OF POWER!!!

$$
C_{s}=B\left[\log _{2}\left\{1+\frac{P_{S_{1}}}{P_{N}}\right\}+\log _{2}\left\{1+\frac{P_{S_{2}}}{P_{N}}\right\}\right]
$$

Even if $P_{S_{2}}$ is not suitable for a physical channel, dividing by P_{N} might provide an useful theoretical number!!

Then comes the MYTHOLOGY!!!

NEED A RICH MULTIPATH ENVIRONMENT FOR MIMO TO WORK!

(What does this sifly concent mean??)

THIS CAN NEVER HAPPEN AS IT DOES NOT EXIST!!!!

Received Power
$=18.2 \mathrm{~mW}$

SISO SYSTEM

Input Power=1W

Received Power for each mode Mode 1: 13.1 mW Mode 2: 3.4 mW

Input Power=1W; for each spatial mode

$$
\begin{gathered}
C_{\text {SISO }}=B \log _{2}\left(1+\frac{0.0182}{P_{N}}\right)=43.05 B \\
C_{\text {MIMO }}=B \log _{2}\left(1+\frac{0.0131}{2 \times P_{N}}\right)+B \log _{2}\left(1+\frac{0.0034}{2 \times P_{N}}\right) \\
=B ? 41.57 \quad B ? 39.63 \quad B \times 81.2
\end{gathered}
$$

Observations:
-Two inefficient radiating modes; yet the capacity is higher than
2 a SISO
2.Two SISO is always better than a 2×2 MIMO under this non-
3. physical metric
3. There is a threshold effect as a function of Signal-to-noise ratio

SUMMARY:

\rightarrow No Plane waves
\rightarrow It is a Near Field Environment
\rightarrow Can one define a multipath without a plane wave?

MISO system setup; Transmitter is 20 m . above ground; Rx is 2 m . above ground; = transmitting antenna spacing; $\mathrm{D}=$ distance between the transmitter and the receiver. (For the SISO case, the transmitting antenna is placed at the center of the MISO transmitter.)

MISO-to-SISO power ratio
$d B$

Physics of

Multiantenna Systems and Broadband Processing

TAPAN K. SARKAR
MAGDALENA SALAZAR-PALMA
ERIC I.. MOKOLE
 Antenna size: $\mathrm{N} / 2$ (0.25 m) Antenna position : $(0,0,0)$

Free Space

Inside a Dielectric Room The three components of the fields $E r, E \theta, E \varphi$ inside the room at $x=$ $-3.75 \lambda, z=-3.75 \lambda$, as a function of y

Objective

- To illustrate that an electromagnetic macro modeling can properly predict the path loss exponent in a mobile cellular wireless communication system.
- Path loss exponent in a cellular wireless communication system is 3, preceded by a slow fading region, and followed by the fringe region where the path loss exponent is 4.
- Theoretical analysis: Radiation from a vertical dipole over a horizontal imperfect ground plane: Schelkunoff formulation.
- Experiments: Okumura et al. and more extensive experimental data from different base stations.

Point Source: Field decays as $1 / R^{\wedge} 2$
: Power decays ar 1/R^4 - 10 Log10(P)

- 40 dB/decade

Line Source: Field decays as 1/R
: Power decays ar 1/R^2

- 20 dB/decade

Planar source:: Field decays as
What type of a source has: Field decays as $1 / R^{\wedge} 1.5$
: Power decays ar 1/R^3

- 30 dB/decade

Figure 2.2-14 Distance dependence of median field strength in an urban area $\left.P_{r} \alpha d^{-n}\right)$.

Prediction from Ericsson in-building path loss model. Reproduced by permission from Simon R. Saunders, Advances in mobile propagation prediction methods, Chapter 3 of Mobile Antenna Systems Handbook, Edited by: Kyohei Fujimoto, Artech House, 2008.

Empirical model of macrocell propagation at 900 MHz , the dots are measurements taken in suburban area, where as the solid line represents a best fit empirical model. Reproduced by permission from Simon R. Saunders, Advances in mobile propagation prediction methods, Chapter 3 of Mobile Antenna Systems Handbook, Third edition, Edited by: Kyohei Fujimoto, 2008, Artech House, Inc.

Fig. 1-Experimental arrangement for determining the variation of the received field strength with distance.

Proceedings of the Institute of Radio Engineers
Volume 25, Number 2
February, 1937

THE SURFACE WAVE IN RADIO PROPAGATION OVER PLANE EARTH*

By

Charles R. Burrows
(Bell Telephone Laboratories, Inc., Deal, New Jersey)

Experimental Data

Photograph of a Delhi typical urban environment in this study.

Experimental Data

Variation of path loss exponent with distance for BJV base station (1800 MHz). Base station height: 24 m . Beginning of smooth region: 864 m .

- In summary, the expressions for the total Hertz potential near the interface for

$$
\begin{aligned}
& \text { and } \begin{array}{c}
\text { are: } \quad|\varepsilon| \rightarrow \infty \quad \theta \approx \pi / 2 \\
\Pi_{1 z} \approx \begin{cases}P\left[\frac{\exp \left(-j k_{1} R_{1}\right)}{R_{1}}-\frac{\exp \left(-j k_{1} R_{2}\right)}{R_{2}}-\sqrt{j 2 \pi k_{1}}\left(z+z^{\prime}\right) \frac{\exp \left(-j k_{1} R_{2}\right)}{R_{2}^{1.5}}\right] \quad, W<1 \\
P\left[\frac{\exp \left(-j k_{1} R_{1}\right)}{R_{1}}-\frac{\exp \left(-j k_{1} R_{2}\right)}{R_{2}}+2 \sqrt{\varepsilon}\left(z+z^{\prime}\right) \frac{\exp \left(-j k_{1} R_{2}\right)}{R_{2}{ }^{2}}\left[1-\frac{\varepsilon}{j k_{1} R_{2}}\right]\right] & , W>1\end{cases}
\end{array} . \begin{array}{l}
\end{array}
\end{aligned}
$$

where we can recognize two distinct regions:

- the first one, closer to the dipole, with a path loss exponent of 3, height gain, and no dependence with the ground parameters;
- the second one, further away from the dipole, with a path loss exponent of 4 , height gain and dependence with the ground parameters.

$\mathrm{f}=1920 \mathrm{MHz}$

Comparison between Okumura's drive test measurements and the numerical analysis done using Schelkunoff Integrals

Numerical Analysis - Field Near an Earth-Air Interface

Variation of magnitude of Ez from a half-wavelength dipole as a function of distance, at an operating frequency of 900 MHz . The height of the observation point was 2 m . Five different types of ground have been used, with different parameters.

What Type of Wave Is It?

- An optical analog situation:

Range extension due to height gain

